Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429292

RESUMO

When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.


Assuntos
Nitritos , Synechocystis , Nitritos/metabolismo , Nitratos/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Synechocystis/genética , Synechocystis/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo
2.
Sci Rep ; 9(1): 20351, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889119

RESUMO

Despite the enticing discoveries of chaos in nature, triggers and drivers of this phenomenon remain a classical enigma which needs irrefutable empirical evidence. Here we analyze results of the yearlong replicated mesocosm experiment with multi-species plankton community that allowed revealing signs of chaos at different trophic levels in strictly controlled abiotic environment. In mesocosms without external stressors, we observed the "paradox of chaos" when biotic interactions (internal drivers) were acting as generators of internal abiotic triggers of complex plankton dynamics. Chaos was registered as episodes that vanished unpredictably or were substituted by complex behaviour of other candidates when longer time series were considered. Remarkably, episodes of chaos were detected even in the most abiotically stable conditions. We developed the Integral Chaos Indicator to validate the results of the Lyapunov exponent analysis. These findings are essential for modelling and forecasting behaviour of a variety of natural and other global systems.

3.
Microb Ecol ; 77(1): 217-229, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29926147

RESUMO

Early successional biological soil crusts (BSCs), a consortium of bacteria, cyanobacteria, and other microalgae, are one of the first settlement stages on temperate coastal sand dunes. In this study, we investigated the algal biomass (Chlorophyll a (Chl a)), algal (Calgal) and microbial carbon (Cmic), elemental stoichiometry (C:N:P), and acid and alkaline phosphatase activity (AcidPA and AlkPA) of two algae-dominated BSCs from a coastal white dune (northeast Germany, on the southwestern Baltic Sea) which differed in the exposure to wind forces. The dune sediment (DS) was generally low in total carbon (TC), nitrogen (TN), and phosphorus (TP). These elements, together with the soil organic matter (SOM) accumulated in the BSC layer and in the sediment underneath (crust sediment CS), leading to initial soil development. The more disturbed BSC (BSC1) exhibited lower algal and microbial biomass and lower Calgal/Cmic ratios than the undisturbed BSC (BSC2). The BSC1 accumulated more organic carbon (OC) than BSC2. However, the OC in the BSC2 was more effectively incorporated into Cmic than in the BSC1, as indicated by lower OC:Cmic ratios. The AcidPA (1.1-1.3 µmol g-1 DM h-1 or 147-178 µg g-1 DM h-1) and AlkPA (2.7-5.5 µmol g-1 DM h-1 or 372-764 µg g-1 DM h-1) were low in both BSCs. The PA, together with the elemental stoichiometry, indicated no P limitation of both BSCs but rather water limitation followed by N limitation for the algae community and a carbon limitation for the microbial community. Our results explain the observed distribution of early successional and more developed BSCs on the sand dune.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Silício/análise , Microbiologia do Solo , Solo/química , Países Bálticos , Biomassa , Carbono , Clorofila A , Sedimentos Geológicos/química , Alemanha , Microbiota , Nitrogênio , Fósforo , Estações do Ano , Água
4.
Ambio ; 47(Suppl 1): 146-158, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29164540

RESUMO

The EU-water framework directive aims at nutrient reductions, since anthropogenically induced eutrophication is a major threat for coastal waters. However, phytoplankton biomass in southern Baltic Sea coastal water bodies (CWB) remains high and the underlying mechanisms are not well understood. Therefore, a CWB data set was analysed regarding changes in phytoplankton biomass and nutrient concentration of nitrogen (N) and phosphorus (P) from 2000 to 2014. It was expected to find imbalances between produced phytoplankton biomass and total nutrient concentrations. Inner CWB were cyanobacteria-dominated and showed up to five times higher chlorophyll a-concentrations compared to outer CWB with similar total phosphorus-concentrations. Phytoplankton tended to be P-limited during spring and N-limited during summer. Phytoplankton biomass and nutrient concentrations were even higher during very humid years, which indicated a close coupling of the CWB with their catchment areas. This study suggests that re-mesotrophication efforts need to consider the importance of changed phytoplankton composition and nutrient availabilities.


Assuntos
Eutrofização , Fitoplâncton , Biomassa , Clorofila , Clorofila A , Nitrogênio , Fósforo
5.
Front Microbiol ; 8: 923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611738

RESUMO

Cyanobacteria are found worldwide in various habitats. Members of the picocyanobacteria genera Synechococcus and Prochlorococcus dominate in oligotrophic ocean waters. Other picocyanobacteria dominate in eutrophic fresh or brackish waters. Usually, these are morphologically determined as species of the order Chroococcales/clade B2. The phytoplankton of a shallow, eutrophic brackish lagoon was investigated. Phytoplankton was dominated by Aphanothece-like morphospecies year-round for more than 20 years, along a trophy and salinity gradient. A biphasic approach using a culture-independent and a culture-dependent analysis was applied to identify the dominant species genetically. The 16S rRNA gene phylogeny of clone sequences and isolates indicated the dominance of Cyanobium species (order Synechococcales sensu Komárek/clade C1 sensu Shih). This difference between morphologically and genetically based species identifications has consequences for applying the Reynolds functional-groups system, and for validity long-term monitoring data. The literature shows the same pattern as our results: morphologically, Aphanothece-like species are abundant in eutrophic shallow lagoons, and genetically, Cyanobium is found in similar habitats. This discrepancy is found worldwide in the literature on fresh- and brackish-water habitats. Thus, most Aphanothece-like morphospecies may be, genetically, members of Cyanobium.

6.
J Phycol ; 52(2): 311-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27037595

RESUMO

The green microalga Apatococcus lobatus is widely distributed in terrestrial habitats throughout many climatic zones. It dominates green biofilms on natural and artificial substrata in temperate latitudes and is regarded as a key genus of obligate terrestrial consortia. Until now, its isolation, cultivation and application as a terrestrial model organism has been hampered by slow growth rates and low growth capacities. A mixotrophic culturing approach clearly enhanced the accumulation of biomass, thereby permitting the future application of A. lobatus in different types of bio-assays necessary for material and biofilm research. The ability of A. lobatus to grow mixotrophically is assumed as a competitive advantage in terrestrial habitats.


Assuntos
Técnicas de Cultura de Células/métodos , Clorófitas/crescimento & desenvolvimento , Biomassa
7.
Biofouling ; 30(4): 401-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24579703

RESUMO

Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.


Assuntos
Biofilmes , Mudança Climática , Processos Fototróficos , Biomassa , Clima
8.
Microb Ecol ; 61(1): 190-200, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20676625

RESUMO

The influence of bacterial activity and diversity on bacterial growth efficiency was investigated in a flatland river. Eutrophic River Warnow drains predominantly agricultural land and is heavily loaded with nutrients, dissolved and particulate organic matter (DOM and POM), especially humic substances. Although the water column bacterial community consists of many inactive or damaged cells, bacterioplankton sustained a high bacterial secondary production of 0.2-14.5 µg C L(-1) h(-1) and a high DNA synthesis (thymidine uptake) of 6.1-15.5 µg C L(-1) h(-1). The direct and short-term measurement of bacterial respiration (by optodes) revealed high respiration rates especially in summer leading to directly estimated bacterial growth efficiencies (BGE) of 2-28%. These values are compared to calculations based only on bacterial production, which considerably overestimated BGEs. From all these data, River Warnow can be characterized as a strongly remineralizing system. River Warnow was dominated among others by Cytophaga/Flavobacteria and Actinobacteria which are typical for organic rich waters because of their ability to degrade high molecular weight compounds. However, community composition did not significantly affect BGE.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biodiversidade , Carbono/metabolismo , Plâncton/microbiologia , Rios/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/isolamento & purificação , Biomassa , Alemanha , Estações do Ano , Temperatura
9.
Microb Ecol ; 59(1): 59-75, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19936822

RESUMO

Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i. e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.


Assuntos
Bactérias/classificação , Plâncton/classificação , Rios/microbiologia , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Carbono/metabolismo , Impressões Digitais de DNA , Monitoramento Ambiental , Eutrofização , Alemanha , Substâncias Húmicas , Oxigênio/metabolismo , Plâncton/genética , Plâncton/metabolismo , RNA Ribossômico 16S/metabolismo , Rios/química
10.
Planta ; 227(4): 907-16, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18026986

RESUMO

Microcoleus chthonoplastes constitutes one of the dominant microorganisms in intertidal microbial mat communities. In the laboratory, the effects of repeated daily exposure to ultraviolet radiation (16:8 light:dark cycle) was investigated in unicyanobacterial cultures isolated from three different localities (Baltic Sea = WW6; North Sea = STO and Brittany = BRE). Photosynthesis and growth were measured in time series (12-15 days) while UV-absorbing mycosporine-like amino acids (MAAs) and cellular integrity were determined after 12 and 3 days exposure to three radiation treatments [PAR (22 mumol photon m(-2) s(-1)) = P; PAR + UV-A (8 W m(-2)) = PA; PAR + UV-A + UV-B (0.4 W m(-2)) = PAB]. Isolate-specific responses to UVR were observed. The proximate response to radiation stress after 1-day treatment showed that isolate WW6 was the most sensitive to UVR. However, repeated exposure to radiation stress indicated that photosynthetic efficiency (F (v)/F (m)) of WW6 acclimated to UVR. Conversely, although photosynthesis in STO exhibited lower reduction in F (v)/F (m) during the first day, the values declined over time. The BRE isolate was the most tolerant to radiation stress with the lowest reduction in F (v)/F (m )sustained over time. While photosynthetic efficiencies of different isolates were able to acclimate to UVR, growth did not. The discrepancy seems to be due to the higher cell density used for photosynthesis compared to the growth measurement. Apparently, the cell density used for photosynthesis was not high enough to offer self-shading protection because cellular damage was also observed in those filaments under UVR. Most likely, the UVR acclimation of photosynthesis reflects predominantly the performance of the surviving cells within the filaments. Different strategies were observed in MAAs synthesis. Total MAAs content in WW6 was not significantly different between all the radiation treatments. In contrast, the additional fluence of UV-A and UV-B significantly increased MAAs synthesis and accumulation in STO while only UV-B fluence significantly increased MAAs content in BRE. Regardless of the dynamic photosynthetic recovery process and potential UV-protective functions of MAAs, cellular investigation showed that UV-B significantly contributed to an increased cell mortality in single filaments. In their natural mat habitat, M. chthonoplastes benefits from closely associated cyanobacteria which are highly UVR-tolerant due to the production of the extracellular UV-sunscreen scytonemin.


Assuntos
Aminoácidos/metabolismo , Cianobactérias/efeitos da radiação , Fotossíntese/efeitos da radiação , Raios Ultravioleta , Adaptação Fisiológica , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo
11.
Appl Environ Microbiol ; 73(21): 6722-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17766446

RESUMO

A new method of respiration rate measurement based on oxygen luminescence quenching in sensor spots was evaluated for the first time for aquatic bacterial communities. The commonly used Winkler and Clark electrode methods to quantify oxygen concentration both require long incubation times, and the latter additionally causes signal drift due to oxygen consumption at the cathode. The sensor spots proved to be advantageous over those methods in terms of precise and quick oxygen measurements in natural bacterial communities, guaranteeing a respiration rate estimate during a time interval short enough to neglect variations in organism composition, abundance, and activity. Furthermore, no signal drift occurs during measurements, and respiration rate measurements are reliable even at low temperatures and low oxygen consumption rates. Both a natural bacterioplankton sample and a bacterial isolate from a eutrophic river were evaluated in order to optimize the new method for aquatic microorganisms. A minimum abundance of 2.2 x 10(6) respiring cells ml(-1) of a bacterial isolate was sufficient to obtain a distinct oxygen depletion signal within 20 min at 20 degrees C with the new oxygen sensor spot method. Thus, a culture of a bacterial isolate from a eutrophic river (OW 144; 20 x 10(6) respiring bacteria ml(-1)) decreased the oxygen saturation about 8% within 20 min. The natural bacterioplankton sample respired 2.8% from initially 94% oxygen-saturated water in 30 min. During the growth season in 2005, the planktonic community of a eutrophic river consumed between 0.7 and 15.6 micromol O(2) liter(-1) h(-1). The contribution of bacterial respiration to the total plankton community oxygen consumption varied seasonally between 11 and 100%.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Ecossistema , Água Doce/microbiologia , Consumo de Oxigênio/fisiologia , Plâncton/fisiologia , Técnicas Bacteriológicas , Respiração Celular , Plâncton/metabolismo , Dinâmica Populacional , Microbiologia da Água
12.
Environ Microbiol ; 6(4): 377-87, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15008815

RESUMO

The cyanobacterial diversity in the pelagic of a shallow estuary at the Southern Baltic Sea has been investigated by a combination of classical morphological data and a polymerase chain reaction (PCR)-based molecular approach. The aim of the study was to investigate possible changes in the composition of the cyanobacterial community along the salinity and nutrient gradients. For this purpose partial gene sequences of cyanobacterial 16S rDNA and of two functional genes (ggpS- salinity tolerance marker, isiA- iron starvation marker) were amplified and compared with total community DNA. Random distribution of ggpS genotypes along the salinity gradient suggests that synthesis of the osmolyte glucosylglycerol is not restricted to higher salinity sampling sites. Most of the isiA sequences formed a new homogenous cluster in a phylogenetic tree, which indicates that the indigenous cyanobacterial community comprises a group of unknown species. Minimum iron concentrations, which can activate isiA transcription in model cyanobacteria, occurred at a few sampling sites with high phytoplankton biomass and moderate salinity. Nevertheless, isiA expression could be detected at all sampling sites, which indicated restricted iron supply to cyanobacterial phytoplankton in summer.


Assuntos
Aclimatação/fisiologia , Cianobactérias/genética , Cianobactérias/fisiologia , Ferro/metabolismo , Água do Mar/microbiologia , Cianobactérias/classificação , DNA Bacteriano/análise , Genótipo , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , Análise de Sequência de DNA , Microbiologia da Água
13.
Appl Environ Microbiol ; 69(10): 6243-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14532086

RESUMO

Prochlorothrix hollandica is the only filamentous chlorophyll b (Chlb)-containing oxyphotobacterium that has been found in freshwater habitats to date. Chlb serves as a light-harvesting pigment which is bound to special binding proteins (Pcb). Even though Prochlorothrix was initially characterized as a highly salt-sensitive species, we detected it in a brackish water environment that is characterized by salinities of up to 12 practical salinity units. Using PCR and reverse transcription, we amplified pcb gene fragments of phytoplankton samples taken along a salinity gradient in the eutrophic Darss-Zingst estuary (southern Baltic Sea). After sequencing, high levels of homology to the pcbB and pcbC genes of P. hollandica were found. Furthermore, autofluorescence of Prochlorothrix-like filaments that indicated that Chlb was present was detected in enrichment cultures prepared from the estuarine phytoplankton. The detection of Chlb-containing filaments, as well as the pcb and 16S ribosomal DNA sequences, suggests that Prochlorothrix is an indigenous genus in the Darss-Zingst estuary and may also inhabit many other brackish water environments. The potential of using pcb gene detection to differentiate Prochlorothrix from morphologically indistinguishable species belonging to the genera Pseudanabaena and Planktothrix (Oscillatoria) in phytoplankton analyses is discussed.


Assuntos
Clorofila/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Prochlorothrix/classificação , Prochlorothrix/isolamento & purificação , Rios/microbiologia , Cloreto de Sódio/metabolismo , Animais , DNA Ribossômico/análise , Dados de Sequência Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Filogenia , Fitoplâncton/microbiologia , Prochlorothrix/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...